Representation of the penalty term of dynamic concave utilities

نویسندگان

  • Freddy Delbaen
  • Shige Peng
  • Emanuela Rosazza Gianin
چکیده

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

4 M ar 2 00 9 Representation of the penalty term of dynamic concave utilities

In the context of a Brownian filtration and with a fixed finite time horizon, we will provide a representation of the penalty term of general dynamic concave utilities (hence of dynamic convex risk measures) by applying the theory of g-expectations.

متن کامل

ar X iv : 0 80 2 . 11 21 v 1 [ m at h . PR ] 8 F eb 2 00 8 Representation of the penalty term of dynamic concave utilities

In this paper we will provide a representation of the penalty term of general dynamic concave utilities (hence of dynamic convex risk measures) by applying the theory of g-expectations.

متن کامل

Bayesian Quantile Regression with Adaptive Lasso Penalty for Dynamic Panel Data

‎Dynamic panel data models include the important part of medicine‎, ‎social and economic studies‎. ‎Existence of the lagged dependent variable as an explanatory variable is a sensible trait of these models‎. ‎The estimation problem of these models arises from the correlation between the lagged depended variable and the current disturbance‎. ‎Recently‎, ‎quantile regression to analyze dynamic pa...

متن کامل

Computational Biology Lecture 6: Affine Gap Penalty Function, Multiple Sequence Alignment

We saw earlier how we can use a concave gap penalty function γ, i.e. one that satisfies γ(x+1)−γ(x) ≤ γ(x)−γ(x−1), as a more realistic model for penalizing gaps. This was at the expense of increasing the time complexity of our dynamic programming algorithm. With a concave gap penalty function, the new DP algorithm requires O(mn + nm) time, as compared to the O(mn) time bound of previous algorit...

متن کامل

Efficient Computation of Equilibrium Prices for Markets with Leontief Utilities

We present a polynomial time algorithm for the computation of the market equilibrium in a version of Fisher’s model, where the traders have Leontief utility functions. These functions describe a market characterized by strict complementarity. Our algorithm follows from a representation of the equilibrium problem as a concave maximization problem, which is of independent interest. We also show h...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Finance and Stochastics

دوره 14  شماره 

صفحات  -

تاریخ انتشار 2010